菜鸟笔记
提升您的技术认知

操作系统笔记

进程,线程,协程与并行,并发进程线程协程的区别死锁进程,线程,多线程i++的线程安全性同步和异步孤儿进程和僵尸进程/proc进程信息linux中的分段和分页互斥量 mutex线程进程间通信进程创建进程优先级进程的基础知识进程与线程的区别(面试题)线程的控制(创建,终止,等待,分离)可重入 VS 线程安全死锁的概念一级缓存和二级缓存的理解一句话解说内存屏障 Memory barrierbrk(), sbrk() 用法详解malloc/free函数的简单实现一文讲透 “进程、线程、协程”Linux进程状态线程池的陷阱linux内核学习之进程和线程进程与线程的区别和联系内存寻址linux IO子系统和文件系统读写流程Page cache和buffer cache的区别与联系漫谈linux文件IO多线程和多进程的区别内存泄漏字节、字、位、比特的概念和关系如何避免死锁ANSI是什么编码?CPU寻址范围(寻址空间)CPU 使用率低高负载的原因创建多少个线程合适操作系统下spinlock锁解析、模拟及损耗分析线程堆栈堆和栈的内存分配堆和栈的概念和区别堆和栈的区别,申请方式,程序的内存分配什么是 POD 数据类型Linux内存分配小结--malloc、brk、mmap系统调用与内存管理(sbrk、brk、mmap、munmap)进程描述和控制CPU执行程序的原理编译的基本概念Linux虚拟地址空间布局一个程序从源代码到可执行程序的过程程序的运行机制——CPU、内存、指令的那些事分页内存管理——虚拟地址到物理地址的转换深刻理解Linux进程间通信fork之后父子进程的内存关系fork之后,子进程继承了父进程哪些内容关于协程及其锁的一些认识对协程的一点理解std::thread join和detach区别CAS和ABA问题CAS算法锁和无锁无锁队列的实现Lock-Free 编程锁开销优化以及CAS

CPU寻址范围(寻址空间)

阅读 : 726

一、什么叫寻址空间?

         寻址空间一般指的是CPU对于内存寻址的能力。通俗地说,就是能最多用到多少内存的一个问题。数据在存储器(RAM)中存放是有规律的 ,CPU在运算的时候需要把数据提取出来就需要知道数据在那里 ,这时候就需要挨家挨户的找,这就叫做寻址,但如果地址太多超出了CPU的能力范围,CPU就无法找到数据了。 CPU最大能查找多大范围的地址叫做寻址能力 ,CPU的寻址能力以字节为单位。

        通常人们认为,内存容量越大,处理数据的能力也就越强,但内存容量不可能无限的大,它要受到系统结构、硬件设计、制造成本等多方面因素的制约,一个最直接的因素取决于系统的地址总线的地址寄存器的宽度(位数)。

       计算机的寻找范围由总线宽度(处理器的地址总线的位数)决定的,也可以理解为cpu寄存器位数,这二者一般是匹配的。

       Intel公司早期的CPU产品的地址总线和地址寄存器的宽度为20位,即CPU的寻址能力为2^20=1024*1024字节=1024K字节=1M字节;286的地址总线和地址寄存器的宽度为24位,CPU的寻址能力为2^24=1024*4*1024*4B=4*1024*4KB=16M;386及386以上的地址总线和地址寄存器的宽度为32位,CPU的寻址能力为2^32=4096M字节=4G字节。 也就是说,如果机器的CPU过早,即使有很大的内存也不能得到利用,而对于现在的PⅡ级的CPU,其寻址能力已远远超过目前的内存容量。

       由此推出:地址总线为N位(N通常都是8的整数倍;也说N根数据总线)的CPU寻址范围是2的N次方字节,即2^N(B)。

二、16位、32位、64位通常指的是什么?

     从CPU的发展史来看,从以前的8位到现在的64位,8位也就是CPU在一个时钟周期内可并行处理8位二进字符0或是1,那么16就以此类推是64位就64位二进制.
     从数据计算上来讲理论上64位比32快一半。但因为电脑是软硬相配合才能发挥最佳性能的.所以操作系统也必须从32位的到64位的,而且系统的硬件驱动也必须是64位的.
在64CPU的计算机上要安装64位操作系统64位的硬件驱动,32位的硬件驱动是不能用的,只有这样才能发挥计算机的最佳性能.如果64CPU装32操作系统的话,那性能不会有明显的提升。

三、为什么是2的N次方,而不是其他数的N次方?

        因为计算机是采用二进制计算的。 假设一台计算机,它只有1根地址线,请问它最多能对几个存储单元寻址?答案是:2个.因为在任何2进制计算机中,所有物理元件只有 0,1两种状态,对应这个例子,我们假设已经把这唯一的一根地址线与两个存储单元a和b连上了,那么究竟怎么确定何时读a何时读b?有一个办法,当地址线上的电压是高电压时我们读a,相反是低电压时,我们读b.如此一来,一根地址线的情况下,只能对2个存储单元进行寻址 依次类推,2根地址线时可以对4个存储单元进行寻址,对应的电压情况可以是:低低,低高,高低,高高;继续想下去,3根地址线就可以对8个存储单元进行寻址(3个1和3个0不同组合情况:111、110、100、000、101、100、001、011),4根就是16个,也就是说,当有n根地址线时,可以对2的n次方个存储单元进行寻址。

一根线是怎么连接到两个存储单元的?好像不同于一根电话线吧,他有两个线芯或才网线,有八个小线(线芯)? 

四、什么是存储单元 
   存储单元一般应具有存储数据和读写数据的功能,一般以8位二进制作为一个存储单元,也就是一个字节。每个单元有一个地址,是一个整数编码,可以表示为二进制整数。
程序中的变量和主存储器的存储单元相对应。变量的名字对应着存储单元的地址,变量内容对应着单元所存储的数据。
五、为什么计算机采用二进制? (1)技术实现简单,计算机是由逻辑电路组成,逻辑电路通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示。 (2)简化运算规则:两个二进制数和、积运算组合各有三种,运算规则简单,有利于简化计算机内部结构,提高运算速度。 (3)适合逻辑运算:逻辑代数是逻辑运算的理论依据,二进制只有两个数码,正好与逻辑代数中的“真”和“假”相吻合。 (4)易于进行转换,二进制与十进制数易于互相转换。

(5)用二进制表示数据具有抗干扰能力强,可靠性高等优点。因为每位数据只有高低两个状态,当受到一定程度的干扰时,仍能可靠地分辨出它是高还是低。