一 概念
固定窗口就像是滑动窗口的一个特例,固定窗口是大小固定且不能随着时间而变化的。
滑动时间窗口就是把一段时间片分为多个样本窗口,可以通过更细粒度对数据进行统计。然后计算对应的时间落在那个窗口上,来对数据统计;滑动时间窗口,随着时间流失,最开始的样本窗口将会失效,同时会生成新的样本窗口。
例如 我们将1s划分为4个样本窗口,每个样本窗口对应250ms。
二 go-zero中的滑动窗口实现
1.Bucket 样本窗口
Bucket用于记录每个样本窗口的值
// Bucket defines the bucket that holds sum and num of additions.
type Bucket struct {
Sum float64 //样本窗口的值
Count int64 //样本窗口被add的次数
}
func (b *Bucket) add(v float64) {
b.Sum += v
b.Count++
}
//重置样本窗口,样本窗口过期时
func (b *Bucket) reset() {
b.Sum = 0
b.Count = 0
}
2. window 滑动窗口
type window struct {
buckets []*Bucket //样本窗口
size int //样本窗口个数
}
func newWindow(size int) *window {
buckets := make([]*Bucket, size)
for i := 0; i < size; i++ {
buckets[i] = new(Bucket)
}
return &window{
buckets: buckets,
size: size,
}
}
func (w *window) add(offset int, v float64) {
w.buckets[offset%w.size].add(v)
}
func (w *window) reduce(start, count int, fn func(b *Bucket)) {
for i := 0; i < count; i++ {
fn(w.buckets[(start+i)%w.size])
}
}
func (w *window) resetBucket(offset int) {
w.buckets[offset%w.size].reset()
}
3. RollingWindow窗口
bucket和window的实现都很简单,逻辑很好理解。
RollingWindow相对复杂一些。
当add值时需要如下操作:
- 计算已经过期的bucket(样本窗口),将已经过期的bucket重置。
- 计算offset,当前add操作应当记录到哪个bucket中。
type (
// RollingWindowOption let callers customize the RollingWindow.
RollingWindowOption func(rollingWindow *RollingWindow)
// RollingWindow defines a rolling window to calculate the events in buckets with time interval.
RollingWindow struct {
lock sync.RWMutex
size int
win *window
interval time.Duration
offset int
ignoreCurrent bool
lastTime time.Duration // start time of the last bucket
}
)
// NewRollingWindow returns a RollingWindow that with size buckets and time interval,
// use opts to customize the RollingWindow.
func NewRollingWindow(size int, interval time.Duration, opts ...RollingWindowOption) *RollingWindow {
if size < 1 {
panic("size must be greater than 0")
}
w := &RollingWindow{
size: size,
win: newWindow(size),
interval: interval,
lastTime: timex.Now(),
}
for _, opt := range opts {
opt(w)
}
return w
}
// Add adds value to current bucket.
func (rw *RollingWindow) Add(v float64) {
rw.lock.Lock()
defer rw.lock.Unlock()
rw.updateOffset()
rw.win.add(rw.offset, v)
}
// Reduce runs fn on all buckets, ignore current bucket if ignoreCurrent was set.
func (rw *RollingWindow) Reduce(fn func(b *Bucket)) {
rw.lock.RLock()
defer rw.lock.RUnlock()
var diff int
//获取跨度,并计算还有几个bucket还在窗口期内
span := rw.span()
// ignore current bucket, because of partial data
if span == 0 && rw.ignoreCurrent {
diff = rw.size - 1
} else {
diff = rw.size - span
}
if diff > 0 {
offset := (rw.offset + span + 1) % rw.size
rw.win.reduce(offset, diff, fn)
}
}
//距离上次add操作跨度,
//例如 lastTime = 1s, 当前时间1777ms。样本窗口时间250ms,那么跨度为3个样本窗口
func (rw *RollingWindow) span() int {
offset := int(timex.Since(rw.lastTime) / rw.interval)
if 0 <= offset && offset < rw.size {
return offset
}
return rw.size
}
//g
func (rw *RollingWindow) updateOffset() {
span := rw.span()
if span <= 0 {
return
}
offset := rw.offset
// reset expired buckets ,重置已经超时的bucket
for i := 0; i < span; i++ {
rw.win.resetBucket((offset + i + 1) % rw.size)
}
rw.offset = (offset + span) % rw.size
now := timex.Now()
//和样本窗口时间对齐
rw.lastTime = now - (now-rw.lastTime)%rw.interval
}
三 使用
//1.新建一个4样本窗口,每个样本窗口250ms
rollingWindow:= NewRollingWindow(4, time.Millisecond*250,IgnoreCurrentBucket())
//2.add
rollingWindow.Add(1)
rollingWindow.Add(2)
time.Sleep(time.Millisecond*250)
rollingWindow.Add(3)
rollingWindow.Add(4)
//3.获取滑动窗口的值
var Sum float64
var total int64
rollingWindow.Reduce(func(b *collection.Bucket) {
Sum += int64(b.Sum)
total += b.Count
})